home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Almathera Ten Pack 3: CDPD 3
/
Almathera Ten on Ten - Disc 3: CDPD3.iso
/
fish
/
001-100
/
001-025
/
002
/
microemacs
/
display.c
< prev
next >
Wrap
C/C++ Source or Header
|
1995-03-17
|
21KB
|
860 lines
/*
* The functions in this file handle redisplay. There are two halves, the
* ones that update the virtual display screen, and the ones that make the
* physical display screen the same as the virtual display screen. These
* functions use hints that are left in the windows by the commands.
*
* REVISION HISTORY:
*
* ? Steve Wilhite, 1-Dec-85
* - massive cleanup on code.
*/
#include <stdio.h>
#include "ed.h"
#define WFDEBUG 0 /* Window flag debug. */
typedef struct VIDEO {
short v_flag; /* Flags */
char v_text[1]; /* Screen data. */
} VIDEO;
#define VFCHG 0x0001 /* Changed. */
int sgarbf = TRUE; /* TRUE if screen is garbage */
int mpresf = FALSE; /* TRUE if message in last line */
int vtrow = 0; /* Row location of SW cursor */
int vtcol = 0; /* Column location of SW cursor */
int ttrow = HUGE; /* Row location of HW cursor */
int ttcol = HUGE; /* Column location of HW cursor */
VIDEO **vscreen; /* Virtual screen. */
VIDEO **pscreen; /* Physical screen. */
/*
* Initialize the data structures used by the display code. The edge vectors
* used to access the screens are set up. The operating system's terminal I/O
* channel is set up. All the other things get initialized at compile time.
* The original window has "WFCHG" set, so that it will get completely
* redrawn on the first call to "update".
*/
vtinit()
{
register int i;
register VIDEO *vp;
(*term.t_open)();
vscreen = (VIDEO **) malloc(term.t_nrow*sizeof(VIDEO *));
if (vscreen == NULL)
exit(1);
pscreen = (VIDEO **) malloc(term.t_nrow*sizeof(VIDEO *));
if (pscreen == NULL)
exit(1);
for (i = 0; i < term.t_nrow; ++i)
{
vp = (VIDEO *) malloc(sizeof(VIDEO)+term.t_ncol);
if (vp == NULL)
exit(1);
vscreen[i] = vp;
vp = (VIDEO *) malloc(sizeof(VIDEO)+term.t_ncol);
if (vp == NULL)
exit(1);
pscreen[i] = vp;
}
}
/*
* Clean up the virtual terminal system, in anticipation for a return to the
* operating system. Move down to the last line and clear it out (the next
* system prompt will be written in the line). Shut down the channel to the
* terminal.
*/
vttidy()
{
movecursor(term.t_nrow, 0);
(*term.t_eeol)();
(*term.t_close)();
}
/*
* Set the virtual cursor to the specified row and column on the virtual
* screen. There is no checking for nonsense values; this might be a good
* idea during the early stages.
*/
vtmove(row, col)
{
vtrow = row;
vtcol = col;
}
/*
* Write a character to the virtual screen. The virtual row and column are
* updated. If the line is too long put a "$" in the last column. This routine
* only puts printing characters into the virtual terminal buffers. Only
* column overflow is checked.
*/
vtputc(c)
int c;
{
register VIDEO *vp;
vp = vscreen[vtrow];
if (vtcol >= term.t_ncol)
vp->v_text[term.t_ncol - 1] = '$';
else if (c == '\t')
{
do
{
vtputc(' ');
}
while ((vtcol&0x07) != 0);
}
else if (c < 0x20 || c == 0x7F)
{
vtputc('^');
vtputc(c ^ 0x40);
}
else
vp->v_text[vtcol++] = c;
}
/*
* Erase from the end of the software cursor to the end of the line on which
* the software cursor is located.
*/
vteeol()
{
register VIDEO *vp;
vp = vscreen[vtrow];
while (vtcol < term.t_ncol)
vp->v_text[vtcol++] = ' ';
}
/*
* Make sure that the display is right. This is a three part process. First,
* scan through all of the windows looking for dirty ones. Check the framing,
* and refresh the screen. Second, make sure that "currow" and "curcol" are
* correct for the current window. Third, make the virtual and physical
* screens the same.
*/
update()
{
register LINE *lp;
register WINDOW *wp;
register VIDEO *vp1;
register VIDEO *vp2;
register int i;
register int j;
register int c;
wp = wheadp;
while (wp != NULL)
{
/* Look at any window with update flags set on. */
if (wp->w_flag != 0)
{
/* If not force reframe, check the framing. */
if ((wp->w_flag & WFFORCE) == 0)
{
lp = wp->w_linep;
for (i = 0; i < wp->w_ntrows; ++i)
{
if (lp == wp->w_dotp)
goto out;
if (lp == wp->w_bufp->b_linep)
break;
lp = lforw(lp);
}
}
/* Not acceptable, better compute a new value for the line at the
* top of the window. Then set the "WFHARD" flag to force full
* redraw.
*/
i = wp->w_force;
if (i > 0)
{
--i;
if (i >= wp->w_ntrows)
i = wp->w_ntrows-1;
}
else if (i < 0)
{
i += wp->w_ntrows;
if (i < 0)
i = 0;
}
else
i = wp->w_ntrows/2;
lp = wp->w_dotp;
while (i != 0 && lback(lp) != wp->w_bufp->b_linep)
{
--i;
lp = lback(lp);
}
wp->w_linep = lp;
wp->w_flag |= WFHARD; /* Force full. */
out:
/* Try to use reduced update. Mode line update has its own special
* flag. The fast update is used if the only thing to do is within
* the line editing.
*/
lp = wp->w_linep;
i = wp->w_toprow;
if ((wp->w_flag & ~WFMODE) == WFEDIT)
{
while (lp != wp->w_dotp)
{
++i;
lp = lforw(lp);
}
vscreen[i]->v_flag |= VFCHG;
vtmove(i, 0);
for (j = 0; j < llength(lp); ++j)
vtputc(lgetc(lp, j));
vteeol();
}
else if ((wp->w_flag & (WFEDIT | WFHARD)) != 0)
{
while (i < wp->w_toprow+wp->w_ntrows)
{
vscreen[i]->v_flag |= VFCHG;
vtmove(i, 0);
if (lp != wp->w_bufp->b_linep)
{
for (j = 0; j < llength(lp); ++j)
vtputc(lgetc(lp, j));
lp = lforw(lp);
}
vteeol();
++i;
}
}
#if ~WFDEBUG
if ((wp->w_flag&WFMODE) != 0)
modeline(wp);
wp->w_flag = 0;
wp->w_force = 0;
#endif
}
#if WFDEBUG
modeline(wp);
wp->w_flag = 0;
wp->w_force = 0;
#endif
wp = wp->w_wndp;
}
/* Always recompute the row and column number of the hardware cursor. This
* is the only update for simple moves.
*/
lp = curwp->w_linep;
currow = curwp->w_toprow;
while (lp != curwp->w_dotp)
{
++currow;
lp = lforw(lp);
}
curcol = 0;
i = 0;
while (i < curwp->w_doto)
{
c = lgetc(lp, i++);
if (c == '\t')
curcol |= 0x07;
else if (c < 0x20 || c == 0x7F)
++curcol;
++curcol;
}
if (curcol >= term.t_ncol) /* Long line. */
curcol = term.t_ncol-1;
/* Special hacking if the screen is garbage. Clear the hardware screen,
* and update your copy to agree with it. Set all the virtual screen
* change bits, to force a full update.
*/
if (sgarbf != FALSE)
{
for (i = 0; i < term.t_nrow; ++i)
{
vscreen[i]->v_flag |= VFCHG;
vp1 = pscreen[i];
for (j = 0; j < term.t_ncol; ++j)
vp1->v_text[j] = ' ';
}
movecursor(0, 0); /* Erase the screen. */
(*term.t_eeop)();
sgarbf = FALSE; /* Erase-page clears */
mpresf = FALSE; /* the message area. */
}
/* Make sure that the physical and virtual displays agree. Unlike before,
* the "updateline" code is only called with a line that has been updated
* for sure.
*/
for (i = 0; i < term.t_nrow; ++i)
{
vp1 = vscreen[i];
if ((vp1->v_flag&VFCHG) != 0)
{
vp1->v_flag &= ~VFCHG;
vp2 = pscreen[i];
updateline(i, &vp1->v_text[0], &vp2->v_text[0]);
}
}
/* Finally, update the hardware cursor and flush out buffers. */
movecursor(currow, curcol);
(*term.t_flush)();
}
/*
* Update a single line. This does not know how to use insert or delete
* character sequences; we are using VT52 functionality. Update the physical
* row and column variables. It does try an exploit erase to end of line. The
* RAINBOW version of this routine uses fast video.
*/
updateline(row, vline, pline)
char vline[];
char pline[];
{
#if RAINBOW
register char *cp1;
register char *cp2;
register int nch;
cp1 = &vline[0]; /* Use fast video. */
cp2 = &pline[0];
putline(row+1, 1, cp1);
nch = term.t_ncol;
do
{
*cp2 = *cp1;
++cp2;
++cp1;
}
while (--nch);
#else
register char *cp1;
register char *cp2;
register char *cp3;
register char *cp4;
register char *cp5;
register int nbflag;
cp1 = &vline[0]; /* Compute left match. */
cp2 = &pline[0];
while (cp1!=&vline[term.t_ncol] && cp1[0]==cp2[0])
{
++cp1;
++cp2;
}
/* This can still happen, even though we only call this routine on changed
* lines. A hard update is always done when a line splits, a massive
* change is done, or a buffer is displayed twice. This optimizes out most
* of the excess updating. A lot of computes are used, but these tend to
* be hard operations that do a lot of update, so I don't really care.
*/
if (cp1 == &vline[term.t_ncol]) /* All equal. */
return;
nbflag = FALSE;
cp3 = &vline[term.t_ncol]; /* Compute right match. */
cp4 = &pline[term.t_ncol];
while (cp3[-1] == cp4[-1])
{
--cp3;
--cp4;
if (cp3[0] != ' ') /* Note if any nonblank */
nbflag = TRUE; /* in right match. */
}
cp5 = cp3;
if (nbflag == FALSE) /* Erase to EOL ? */
{
while (cp5!=cp1 && cp5[-1]==' ')
--cp5;
if (cp3-cp5 <= 3) /* Use only if erase is */
cp5 = cp3; /* fewer characters. */
}
movecursor(row, cp1-&vline[0]); /* Go to start of line. */
while (cp1 != cp5) /* Ordinary. */
{
(*term.t_putchar)(*cp1);
++ttcol;
*cp2++ = *cp1++;
}
if (cp5 != cp3) /* Erase. */
{
(*term.t_eeol)();
while (cp1 != cp3)
*cp2++ = *cp1++;
}
#endif
}
/*
* Redisplay the mode line for the window pointed to by the "wp". This is the
* only routine that has any idea of how the modeline is formatted. You can
* change the modeline format by hacking at this routine. Called by "update"
* any time there is a dirty window.
*/
modeline(wp)
WINDOW *wp;
{
register char *cp;
register int c;
register int n;
register BUFFER *bp;
n = wp->w_toprow+wp->w_ntrows; /* Location. */
vscreen[n]->v_flag |= VFCHG; /* Redraw next time. */
vtmove(n, 0); /* Seek to right line. */
vtputc('-');
bp = wp->w_bufp;
if ((bp->b_flag&BFCHG) != 0) /* "*" if changed. */
vtputc('*');
else
vtputc('-');
n = 2;
cp = " MicroEMACS -- "; /* Buffer name. */
while ((c = *cp++) != 0)
{
vtputc(c);
++n;
}
cp = &bp->b_bname[0];
while ((c = *cp++) != 0)
{
vtputc(c);
++n;
}
vtputc(' ');
++n;
if (bp->b_fname[0] != 0) /* File name. */
{
cp = "-- File: ";
while ((c = *cp++) != 0)
{
vtputc(c);
++n;
}
cp = &bp->b_fname[0];
while ((c = *cp++) != 0)
{
vtputc(c);
++n;
}
vtputc(' ');
++n;
}
#if WFDEBUG
vtputc('-');
vtputc((wp->w_flag&WFMODE)!=0 ? 'M' : '-');
vtputc((wp->w_flag&WFHARD)!=0 ? 'H' : '-');
vtputc((wp->w_flag&WFEDIT)!=0 ? 'E' : '-');
vtputc((wp->w_flag&WFMOVE)!=0 ? 'V' : '-');
vtputc((wp->w_flag&WFFORCE)!=0 ? 'F' : '-');
n += 6;
#endif
while (n < term.t_ncol) /* Pad to full width. */
{
vtputc('-');
++n;
}
}
/*
* Send a command to the terminal to move the hardware cursor to row "row"
* and column "col". The row and column arguments are origin 0. Optimize out
* random calls. Update "ttrow" and "ttcol".
*/
movecursor(row, col)
{
if (row!=ttrow || col!=ttcol)
{
ttrow = row;
ttcol = col;
(*term.t_move)(row, col);
}
}
/*
* Erase the message line. This is a special routine because the message line
* is not considered to be part of the virtual screen. It always works
* immediately; the terminal buffer is flushed via a call to the flusher.
*/
mlerase()
{
movecursor(term.t_nrow, 0);
(*term.t_eeol)();
(*term.t_flush)();
mpresf = FALSE;
}
/*
* Ask a yes or no question in the message line. Return either TRUE, FALSE, or
* ABORT. The ABORT status is returned if the user bumps out of the question
* with a ^G. Used any time a confirmation is required.
*/
mlyesno(prompt)
char *prompt;
{
register int s;
char buf[64];
for (;;)
{
strcpy(buf, prompt);
strcat(buf, " [y/n]? ");
s = mlreply(buf, buf, sizeof(buf));
if (s == ABORT)
return (ABORT);
if (s != FALSE)
{
if (buf[0]=='y' || buf[0]=='Y')
return (TRUE);
if (buf[0]=='n' || buf[0]=='N')
return (FALSE);
}
}
}
/*
* Write a prompt into the message line, then read back a response. Keep
* track of the physical position of the cursor. If we are in a keyboard
* macro throw the prompt away, and return the remembered response. This
* lets macros run at full speed. The reply is always terminated by a carriage
* return. Handle erase, kill, and abort keys.
*/
mlreply(prompt, buf, nbuf)
char *prompt;
char *buf;
{
register int cpos;
register int i;
register int c;
cpos = 0;
if (kbdmop != NULL)
{
while ((c = *kbdmop++) != '\0')
buf[cpos++] = c;
buf[cpos] = 0;
if (buf[0] == 0)
return (FALSE);
return (TRUE);
}
mlwrite(prompt);
for (;;)
{
c = (*term.t_getchar)();
switch (c)
{
case 0x0D: /* Return, end of line */
buf[cpos++] = 0;
if (kbdmip != NULL)
{
if (kbdmip+cpos > &kbdm[NKBDM-3])
{
ctrlg(FALSE, 0);
(*term.t_flush)();
return (ABORT);
}
for (i=0; i<cpos; ++i)
*kbdmip++ = buf[i];
}
(*term.t_putchar)('\r');
ttcol = 0;
(*term.t_flush)();
if (buf[0] == 0)
return (FALSE);
return (TRUE);
case 0x07: /* Bell, abort */
(*term.t_putchar)('^');
(*term.t_putchar)('G');
ttcol += 2;
ctrlg(FALSE, 0);
(*term.t_flush)();
return (ABORT);
case 0x7F: /* Rubout, erase */
case 0x08: /* Backspace, erase */
if (cpos != 0)
{
(*term.t_putchar)('\b');
(*term.t_putchar)(' ');
(*term.t_putchar)('\b');
--ttcol;
if (buf[--cpos] < 0x20)
{
(*term.t_putchar)('\b');
(*term.t_putchar)(' ');
(*term.t_putchar)('\b');
--ttcol;
}
(*term.t_flush)();
}
break;
case 0x15: /* C-U, kill */
while (cpos != 0)
{
(*term.t_putchar)('\b');
(*term.t_putchar)(' ');
(*term.t_putchar)('\b');
--ttcol;
if (buf[--cpos] < 0x20)
{
(*term.t_putchar)('\b');
(*term.t_putchar)(' ');
(*term.t_putchar)('\b');
--ttcol;
}
}
(*term.t_flush)();
break;
default:
if (cpos < nbuf-1)
{
buf[cpos++] = c;
if (c < ' ')
{
(*term.t_putchar)('^');
++ttcol;
c ^= 0x40;
}
(*term.t_putchar)(c);
++ttcol;
(*term.t_flush)();
}
}
}
}
/*
* Write a message into the message line. Keep track of the physical cursor
* position. A small class of printf like format items is handled. Assumes the
* stack grows down; this assumption is made by the "++" in the argument scan
* loop. Set the "message line" flag TRUE.
*/
mlwrite(fmt, arg)
char *fmt;
{
register int c;
register char *ap;
movecursor(term.t_nrow, 0);
ap = (char *) &arg;
while ((c = *fmt++) != 0) {
if (c != '%') {
(*term.t_putchar)(c);
++ttcol;
}
else
{
c = *fmt++;
switch (c) {
case 'd':
mlputi(*(int *)ap, 10);
ap += sizeof(int);
break;
case 'o':
mlputi(*(int *)ap, 8);
ap += sizeof(int);
break;
case 'x':
mlputi(*(int *)ap, 16);
ap += sizeof(int);
break;
case 'D':
mlputli(*(long *)ap, 10);
ap += sizeof(long);
break;
case 's':
mlputs(*(char **)ap);
ap += sizeof(char *);
break;
default:
(*term.t_putchar)(c);
++ttcol;
}
}
}
(*term.t_eeol)();
(*term.t_flush)();
mpresf = TRUE;
}
/*
* Write out a string. Update the physical cursor position. This assumes that
* the characters in the string all have width "1"; if this is not the case
* things will get screwed up a little.
*/
mlputs(s)
char *s;
{
register int c;
while ((c = *s++) != 0)
{
(*term.t_putchar)(c);
++ttcol;
}
}
/*
* Write out an integer, in the specified radix. Update the physical cursor
* position. This will not handle any negative numbers; maybe it should.
*/
mlputi(i, r)
{
register int q;
static char hexdigits[] = "0123456789ABCDEF";
if (i < 0)
{
i = -i;
(*term.t_putchar)('-');
}
q = i/r;
if (q != 0)
mlputi(q, r);
(*term.t_putchar)(hexdigits[i%r]);
++ttcol;
}
/*
* do the same except as a long integer.
*/
mlputli(l, r)
long l;
{
register long q;
if (l < 0)
{
l = -l;
(*term.t_putchar)('-');
}
q = l/r;
if (q != 0)
mlputli(q, r);
(*term.t_putchar)((int)(l%r)+'0');
++ttcol;
}
#if RAINBOW
putline(row, col, buf)
int row, col;
char buf[];
{
int n;
n = strlen(buf);
if (col + n - 1 > term.t_ncol)
n = term.t_ncol - col + 1;
Put_Data(row, col, n, buf);
}
#endif